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Abstract— Artifacts can result when reconstructing a dynamic image reconstructing temporally static distributions [9]. In addition,
?equenc)e from i“COSSiSte”t Si”%'ebphoﬁon IemiSSiO” ComPUtei tomofgraphywe studied the biases that result from modeling various orders
SPECT) projection data acquired by a slowly rotating gantry. The artifacts . . . . .
can lead to biases in kinetic parameters estimated from time-activity curves of temporal continuity and using various t_lme sgmpllngs [4] _In
generated by overlaying volumes of interest on the images. To overcomethe present work, we address computational issues associated
these biases in conventional image based dynamic data analysis, we havgyith evaluating the statistical uncertainty of the spatiotemporal
been |nvest|g_at|ng the estlmano'n of t|me—act|\_/|ty curves and k|net|§ model model parameter estimates, and use Monte Carlo simulations to
parameters directly from dynamic SPECT projection data by modeling the . ) ) . .
spatial and temporal distribution of the radiopharmaceutical throughout ~ Validate a fast algorithm for computing the covariance matrix fqr
the projected field of view. In the present work, we perform Monte Carlo  the parameters and to study the effects of the temporal modeling

simulations to study the effects of the temporal modeling on the statistical gp the statistical variability of the reconstructed distributions.
variability of the reconstructed spatiotemporal distributions. The simula-

tions utilize computationally efficient methods for fully four-dimensional
(4-D) direct estimation of spatiotemporal distributions and their statistical Il. FAST COMPUTATION OF STATISTICAL UNCERTAINTY

uncertainties, using a spatial segmentation and temporal B-splines. The FOR SPATIOTEMPORAL DISTRIBUTIONS

simulation results suggest that there is benefit in modeling higher orders of . . . . .
temporal spline continuity. In addition, the accuracy of the time modeling Following our development in [4], time-varying activity con-

can be increased substantially without unduly increasing the statistical un- centrations within volumes of interest encompassing the pro-
certainty, by using relatively fine initial time sampling to capture rapidly ~ jected SPECT field of view can be modeled by selecting a set
changing activity distributions. of temporal basis functions capable of representing typical time
variations and having desired smoothness properties. Similarly,

[. INTRODUCTION the spatially nonuniform activity concentration within a particu-

RTIFACTS can result when reconstructing a dynamic imar volume of interest can be modeled by selecting an appropri-
age sequence from inconsistent single photon emissidis set of spatial basis functions. Given a set of temporal basis
computed tomography (SPECT) projection data acquired bl;u(gctions and.s.ets of spatial basi§ functiqns for the volu'mes of
slowly rotating gantry. The artifacts can lead to biases in Hpterest, coefﬂmgnts for the resulting spatlotempora! ba§|s func-
netic parameters estimated from time-activity curves generafiQ’s can be estimated directly from the SPECT projection data,
by overlaying volumes of interest on the images. To overcorf®Ng With the covariance matrix for the coefficients.
these biases in conventional image based dynamic data aig\al—C
ysis, we and others have been investigating the estimation 6fC
time-activity curves and kinetic model parameters directly from ) o " ) ) )
dynamic SPECT projection data by modeling the spatial andPénoting the projection of the.™ spatial bas{ﬁ function along
temporal distribution of the radiopharmaceutical throughout thY ¢ at angle;j by v, and the integral of the™ temporal ba-
projected field of view [1-8]. sis function during the time interval associated with angtd
In our previous work we developed a computationally efffotationk by 7, the projection equations can be expressed as
cient method for fully four-dimensional (4-D) direct estimation M N
of spatiotemporal distributions from dynamic SPECT projection Dijk = Z Z A U, 1)
data [4], which extended Formiconi’s least squares algorithm for 11
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where thep;;, are the measured projections, the;;; are wherea,, - is the [m” + (n” — 1)M]" element ofa, and
weighting factors/ is the number of projection rays per angle;; x” denotes scalar multiplication. Rearranging the summations
J is the number of angles per rotation, alidis the number of yields
rotations. Typically, the weighting factors are either unity for an v N
unweighted fit or the estimated variances of the projections for, mnm/n’ Z Z R

. . Q' X
a weighted fit.

Equations (1) and (2) can be rewritten in matrix form as

I K

J m m/ m// n n/ n//

p =Fa 3) E E Ui Uij Wyj VikVikVjk
i=1 k=1

m/’'=1n""=1

j=1
and . ] ©)
X2 =(p* — Fa)TW(p* —Fa), (4) = mgl ngl Arrnt ; o gj
respectively, wherg is anIJ K element column vector whose M N S
i+ (j — DI + (k — 1)IJ]" element isp;;x, F is anIJK x = 3 S Gy
MN matrix whose{[i + (j — 1)I + (k — 1)IJ],[m + (n — o e
1)M]}™" element isu7?v",, ais anM N element column vector

) ) where the factora™™' ™" and 87"’ denote the summations
whose[m + (n— 1) M]™" element isy, ., p* is anlJ K element - J A

column vector whosé + (j — 1) + (k — 1)1J]" element is 2i=1 44} i) uij e/x/nd Sk Vv respectively, anld the
P}, andW is anlJK x IJK diagonal matrix whosg + (j —  factory™m™n'm"»" denotes the su T g m” gun'n”
1)I + (k — 1)1.J]" diagonal element i$/W;;,. The criterion, ~ Using the factorization given by equation (9), it can be
2, is minimized by the vector of spatiotemporal basis functiothown that most of the overhead associated with computing
coefficients the symmetric matrix elementg™”™ ™ lies in calculating the
. - ammm” factors and the™" "™ 7" factors. These calcula-

a=(F WF)"'F Wp". (%)  tions take abouf(I/N3) + 1]JM N@Q multiply-and-add oper-
ations, where) = (M N)(MN + 1)/2. By comparison, rela-
tively straightforward computation of the summations given by
cov(a) = (FTWF) 'F"Wcov(p*)WF(FTWF)~!, (6) equation (8) takes about/ K Q multiply-and-add operations.
o ) ) . Thus, for the simulated dynamic cardiac cone beam SPECT
where coyp*) is the covariance matrix for the measured projegy, dies described in Section I1l, for whidh{N'3 = 1/2, the fac-

tions. in_an an estimate.o.f c@v*), estimates of the StatiSticaltorization given by equation (9) reduces the computation by a
uncertainties of the coefficienfsare the square roots of the d"factor of abouRT K /3MN ~ 200

agonal elements of the covariance matrix given by equation (6)
and are denoted individually by, .. In general, the errors in B. Covariance Between Integrated Time-Activity Curve Model
the coefficients are correlated and the covariance matrix given Segments
by equation (6) has nonzero elements off the diagonal.
For an unweighted least squares reconstruction of the SR

The covariance matrix for the coefficieritss

Given an estimate of c@#), the covariance matrix for the
. . ) . . ; atiotemporal basis function coefficients, estimates of the co-
tiotemporal basis function coefficienés(i.e., for W an iden- 8 P . . o
tity matrix), an estimate of the symmettd N x MN covari- variance between integrated segments of the time-activity curve
ar)(ce matri'x cota) can be obtairz/ed uickly from eauation (G)models for the volumes of interest can be obtained as follows.
. . 19 y! q . The integral of the time-activity curve model for volume of
as follows. Assuming Poisson noise, the diagonal matrix hay-

ing the modeled projections — Fa along the diagonal can belnterestm, during the time interval associated with anglef

. N . n _
used as an estimate of the covariance matrix for the measurr%t&t'onk , can be expressed 8s, _, AmnUjp- Thus, the co

projections. Substituting this diagonal matrix for ¢p¥) and va_ltrrl]ancle of thfls_ ttlme g/egra_l with tf:e-/tlnfwe [[ntfgrzl/ gssomated
the identity matrix forW, equation (6) can be rewritten as with volume ot interes urning angley” ot rotation™1s

cov(a) = (FTF)'FTdiag FAF(F'F)L.  (7) - -
- : cov Z dmnv;-lk, Z dm/nv;ﬁk,
We have presented a method for quickly calculatifg F)~! n=1 n=1 (10)
in [4]. Using a similar development, the symmethitN x M N B NN n R ) '
matrix FTdiag(Fa)F can be calculated quickly as follows. De- - Z Z Vjik COV@mn, Gmrns) Vi
noting the{[m + (n — 1)M], [m’ + (n’ — 1)M]}" element of =tm=t
FTdiag Fa)F by "™’ one has and the variance of each time integral is
I J K 9 N N ’
=32 D i X Tiom = D D Vi COMbnn, ) . (D)
i=1 j=1k=1 n=1n'=1

(8) N o
M N Y ., Although the estimation of compartmental model kinetic param-
SN ey O3 | < ul vl eters from the reconstructed time-activity curves is not consid-

m’=1n"=1 ered here, kinetic parameters can be estimated more precisely
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using nonlinear weighted least squares, given the covariance be-
tween the time-activity curve models for the blood input func-
tion and the tissue volumes of interest [10, 11].

As a figure of merit related to the global precision of the time-
activity curve model for volume of interest, the following ex-
pression yields a squared noise-to-signal ratio (NSR) calculated
as the mean (over all of the time segments) of the expected val-
ues of the squared errors between the integrated segments of
the “true” and modeled curves, normalized by the mean square
value of the integrated segments of the “true” curve:

J K
Zj:l Zk:l szkm

5,2n = 5 - (12) Fig. 1. Transverse cross section through the MCAT emission phantom, showing
ZL'] . ZkK . ZN . &mnvnk the truncation of data resulting from the use of cone beam collimators.
1= = n— ]
Substituting equation (11) into equation (12), the squared NSR, 180
2, can be calculated quickly by rearranging the summations, 160 |
precomputing the inner products of the temporal basis functions, 10|
v = 3 Sy vy, and exploiting the symmetry with . wl|
respect to the indices andn': s ol
©
N N ~ ~ nn’ 2 N
62 _ Zn:l Zn':l COV(am”’ amn/)lj (13) g 80 normal myocardium
m N N A~ ~ nn' . = 60
Zn:l Zn’:l AmnAmn'V
. . . . . 40
The global NSR¢,,,, is used in Section Il to assess the precision
of temporal modeling for simulated dynamic cardiac cone beam 2
SPECT studies. 0

time (min)
I1l. COMPUTER SIMULATIONS Fig. 2. Simulated teboroxime time-activity curves for the volumes in Fig. 1.
Using the simulation apparatus described in [4], Monte Carlo

simulations were performed to validate the fast algorithm pre-

sented in Section Il, and to study the effects of the temporal Lo
modeling on the statistical variability of the reconstructed spa-
tiotemporal distributions 0.75 |

Simulated spatiotemporal distributions were obtained using
the Mathematical Cardiac Torso (MCAT) phantom developed at
the University of North Carolina [12]. The emission phantom
(Fig. 1) was composed of 128 contiguous 1.75 mme-thick slices
and contained the blood pool, three myocardial tissue volumes 025 |
of interest (normal myocardium, septal defect, and lateral de-
fect), liver, and background tissue. Projections were attenuated 0
using the corresponding MCAT attenuation phantom.

The simulated _tlme_aCtIVIty cur_ves (Fig. 2) ml_mICked the Ifll_:_ig. 3. Sixteen piecewise quadratic B-spline temporal basis functions used to
netics of teboroxime [13]. The simulated 15 min data acquisi- validate the fast algorithm. The thirteenth spline is shown as a solid curve.
tion consisted off = 2048 cone beam projection rays per an-
gle (64 transversex 32 axial), / = 120 angles per revolution, qqeled to contain spatially uniform activity, which yielded
gnd_K = 15 revolutions, an_d th_us ylelded about 3.7 million prog; _ g sets of spatial basis projection factors.
jection samples. The projection bins were 7 nym7 mm at
the detector, and the detector was 30 cm from the center of Kle
field of view. The cone beam collimators had a hole diameter of
2 mm, a length of 4 cm, and were offset 1 cm from the detector.A set of 1600 realizations of projection data having Pois-
The focal length was 70 cm, which resulted in truncation of tren noise was generated and reconstructed using temporal ba-
data (Fig. 1). Attenuation and geometric point response wesie integral factors?; that were defined by integrating = 16
modeled using a ray-driven projector with line length weighsplines spanning 15 time segments having geometrically in-
ing [14]. Scatter was not modeled. The amplitude of the simareasing length (Fig. 3). Piecewise quadratic B-splines were
lated blood input function was adjusted so that about 10 milliarsed with an initial time segment length of 10 sec. The result-
events were detected using the cone beam collimators. ing curve models were continuous through their first derivative.

The spatial basis projection factoug; were defined by for- For noiseless projections, the modeling error was less than 2%,
ward projecting each of the six known emission volumes comere the error was defined to be the root mean square (RMS)
posing the MCAT phantom (Fig. 1). Each emission volume watifference between the simulated curve and the spline model,

3 6 9 12 15

time (min)

Validation of the Fast Algorithm
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TABLE |
OBSERVED AND ESTIMATED STATISTICAL UNCERTAINTIES FOR SPATIOTEMPORAL BASIS FUNCTION COEFFICIENTBOR 1600REALIZATIONS OF NOISY
PROJECTIONS THE SAMPLE STANDARD DEVIATIONS OF THE COEFFICIENT$THE SECOND COLUMN IN EACH OF THE FOUR SUBTABLES) AGREE CLOSELY
WITH THE SAMPLE MEANS OF THE ESTIMATED STATISTICAL UNCERTAINTIES(THE THIRD COLUMN IN EACH OF THE FOUR SUBTABLES).

blood pool normal myocardium septal defect lateral defect
n ain [ d2n Tayy, a3n Tay, dan Tayy
sample samplg sample| sample samplg sample| sample samplg sample| sample samplg sample
mean sdev | mean mean sdev | mean mean sdev | mean mean sdev | mean

0.279 0.128 0.131| 0.0102  0.166 0.166| -0.0529 1.28 1.29 | -0.212 0.747 0.762
5.20 0.138 0.140| 1.05 0.171 0.174| 0.559 1.33 1.35 | 0.979 1.47 1.46
7.65 0.157 0.160| 2.30 0.185 0.187| 1.36 1.89 1.88 1.38 3.00 2.99
8.20 0.172 0.175| 3.75 0.331 0.333| 1.89 3.04 3.05 2.42 1.95 1.95
7.19 0.153 0.160| 5.15 0.222 0.219| 2.33 191 1.94 3.25 1.26 1.27
5.40 0.105 0.107| 6.30 0.148 0.145| 2.70 1.20 1.24 3.58 1.75 1.73
3.51 0.0974 0.0953 7.07 0.141 0.140| 2.87 1.50 154 3.59 0.876 0.864
2.00 0.0658 0.0668 7.36 0.108 0.109| 2.67 0.886 0.904| 3.11 1.08 1.09
1.04 0.0545 0.0543 7.21 0.0839 0.083q6 2.45 0.600 0.602| 2.44 0.593 0.602
10 | 0.535 0.0464 0.0444 6.71 0.0743 0.0735 2.02 0.560 0.562| 1.69 0.418 0.411
11 | 0.308 0.0361 0.0362 5.98 0.0632 0.0628 1.57 0.486 0.477| 1.03 0.364 0.354
12 | 0.208 0.0305 0.0298 5.13 0.0538 0.0530 1.13 0.397 0.399| 0.592 0.296 0.300
13 | 0.149 0.0250 0.0245 4.20 0.0454 0.0441 0.761 0.327 0.325| 0.307 0.258 0.253
14 | 0.103 0.0197 0.0201 3.28 0.0360 0.0365 0.478 0.268 0.270| 0.179 0.206 0.207
15 | 0.0657 0.0167 0.0168 2.39 0.0303 0.0308 0.268 0.232 0.234| 0.0853  0.165 0.170
16 | 0.0399 0.0169 0.0169 1.64 0.0314 0.0313 0.135 0.270 0.269| 0.0651 0.161 0.164

©oo~NOoOUA~AWNE

TABLE Il the septal and lateral defects exhibited the largest variability, be-
OBSERVED AND ESTIMATED NOISETO-SIGNAL RATIOS FOR cause of their small spatiotemporal support.
TIME-ACTIVITY CURVES, FOR 1600REALIZATIONS OF NOISY
PROJECTIONS B. Effects of Temporal Modeling
observed NSR | estimated NSR To study the statistical variability that results from modeling
(%) Em (%) various orders of temporal continuity and using various time
sample samplg sample sample l 24 sets of 1000 lizati f iacti data h
mean  sdev | mean  sdev samplings, 24 sets o realizations of projection data hav-
blood pool 151 0.35 156 0.008 ing Poisson noise were generated. Each set of 1000 projections
normal myocardium|  1.13 0.27 1.16 0.003 was reconstructed using a different set of temporal basis func-
septal defect 32.5 9.1 32.5 2.6 tions consisting ofV = 16 splines spanning 15 time segments
lateral defect 28.5 8.0 28.6 2.3 ; 9 N Pl P gL 9 .
liver 0.167 0031 0170 0.0001 having geometrically increasing length (e.g., Fig. 3). Piecewise
background 0.242  0.058 0.247  0.0002 cubic, quadratic, linear, or constant B-splines were used with

initial time segment lengths of 2.5, 5, 10, 20, 40, or 60 sec.
normalized by the RMS value of the simulated curve [4]. Fig. 4 shows the results for the blood pool and three myocar-
%ial tissue volumes. For each temporal basis set and volume of

The computational benefit of using the factorization give]
terest, there was close agreement between the sample mean

by equation (9) to estimate the covariance matrix for the sd . .

tiotemporal basis function coefficients was evident in the simﬂ—ltheI ?ngatid NS{FEL a?ﬁ the (:.bse][vec'i:_NSLlR,_\r/\r/]hlchﬁwzis f
lations. The number of multiply-and-add operations used to C%]F} cu all ed as | es((j:rl ef tlr:] el_cap lon tﬂr I\IlgSR € el (ta_c Io
culateFTdiag(Fa)F was reduced from about 17 billion to abouf"® Polynomial order of the splines on the was retatively

80 million. Using a 194-MHz R10000-based SGI Workstatior‘?,ma"' while the effect of the t_ime sampl_ing was larger. The N.SR
it took 34 sec to estimate the 96 coefficients for the spatiote nded to decrease as the time sampling became more uniform

poral basis functions, their covariance matrix, and the squa - for initial time segment lengths of 4(.) or 60 seg). Howev_er,
noise-to-signal ratios given by equation (13). the decrease in NSR was offset by an increase in RMS bias,

Table | shows that for the blood pool and myocardial tiss hich was calculated as described in the caption for Fig. 4. The

volumes, the sample means of the__ (the square roots of MS bias increased because these basis sets had initial sam-

the diagonal elements of the estimated covariance matrix) w }g}gs th'f’“. were 100 long to gc?curately modgl the begmmng.of
within 5% of the sample standard deviations of the, (the the acquisition, when the activity concentrations were changing

estimated spatiotemporal basis function coefficients). For tWé’St rap|dly.(F|g. 2). The RMS bias also tended to increase as
liver and background tissue, the agreement was to within 49% polynomial order of the splines decreased. Overall, the best

(data not shown). The coefficients of variation for the results were obtained with cubic or quadratic splines having ini-
were less than 20/;) (data not shown) ™ tial time samplings of 10 sec or less. Similar findings were ob-

Table Il shows that the sample means ofghefthe estimated tained for the liver and background tissue (data not shown).
NSRs given by equation (13)] were within 4% of the sample
means of the RMS differences between the 1600 sets of time-
activity curve models and their corresponding mean curves, norThe fast algorithm presented in Section Il facilitated the study
malized by the RMS values of the mean curves. The curves fdrthe statistical variability that results from modeling various

IV. DISCUSSION
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Fig. 4. Effects of temporal model-
ing. The “” symbols denote RMS
bias values observed for 1000 real-
izations of noisy projections. For
each temporal basis set, RMS bias
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1000 noisy curves, and then calcu-
lating the RMS difference between
the mean noisy curve and the sim-
ulated curve (Fig.2). The RMS

difference was then normalized by

25 5 10 20 4060 25 5 f(\) 20 40 60

the RMS value for the simulated
curve and expressed as a percent-

100
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age. The &” symbols denote the

observed NSR for each basis set,
which was calculated as the mean
value of the RMS differences be-
tween the 1000 noisy curves and the
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the RMS value of the mean noisy
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curve, and expressed as a percent-
age. The %" symbols denote the
mean values of the estimated NSR,
&m, calculated using equation (13).
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These values agree closely with the
25 5 10 20 40 60 observed NSR values.
initial segment (sec)

constant B-spline

orders of temporal continuity and using various time samplings} A. Sitek, E. V. R. Di Bella, and G. T. Gullberg, “Reconstruction from
when estimating spatiotemporal distributions directly from dy-

namic SPECT projection data. The simulation results presented

in Section Il suggest that there is benefit in modeling higher
orders of temporal continuity. In addition, it appears that tHé&
accuracy of time-activity curve models can be increased sub-
stantially without unduly increasing their statistical uncertainty,

by using relatively fine initial time sampling to capture rapidiyp]
changing activity distributions.

Future work includes a study of the effects of the B-spliné]
order and initial time sampling on nonlinear weighted least

squares estimates of compartmental model kinetic parameters changes, Phys Med Biglvol. 45, no. 12, pp. 35253543, 2000.

obtained from the time-activity curve models.
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