Chapter 4

Tensor operators

4.1 Introduction

Irreducible tensor operators are central to the theory of angular momentum. This was
first emphasized by Racah in his four classic papers, Phys. Rev. 61, 186 (1942); 62,
438 (1942); 63, 367 (1943); and 76, 1352 (1949). In the second of these papers Racah
defined the tensor operator, actually a rather natural extension of the work presented
by Condon & Shortley [4] on vector operators. The fractional parentage coefficients
were introduced in the third paper and in the last work in the series, Racah derived
term energies for a system of equivalent f-electrons using the theory of continuous
groups. We will return to the content of Racahs’ papers II, III and IV later in the
course.

4.2 Definitions

We start by defining the Cartesian tensor of rank N. A Cartesian tensor of rank N is
in the 3-dimensional Cartesian space defined as an entity with 3% components Tijk...
(the rank is the number of indexes) that transform under an orthogonal transformation
(c.f. rotation) of coordinates as

Tijk..= Y Giajjag ... Toj.. (4.1)
Pk ..
Note that a tensor is not dependent on the choice of coordinate system, after all, we
use them to describe physics! It follows that a tensor of rank zero has one component
that is invariant under rotations, i.e. a scalar. A Cartesian tensor of rank one has
three components and is similar to a vector in three dimensions. A tensor of rank
two is not equivalent to the square matrix formed of its nine components because the
tensor is defined only in terms of its transformation properties. (The matrix is not
restricted in the types of transformations it may undergo and this is also true for a
vector).
We now turn our attention to vector operators. In classical physics we know that
a vector is a quantity with three components that transform under rotation as V; =
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> Ri;V; (see above). In quantum mechanics we assume that the expectation value
of a vector operator V' transforms like the classical vector V under rotation. The
operator equation describing this can be found by noting that the ket |a) transforms
under a rotation according to

@) = D(R)|e) (4.2)
and forming the expectation value

(a|Vila) = (a| DYR)V:D(R)|o) = 3 Rij{a|Vj|o) (4-3)

j

which is in accordance with our assumption. Because Eq. (4.3) is true for any |«) we
have

DY(RVID(R) = ¥ RyY; (4.4)

J

which is our operator equation. R;; is the matrix corresponding to the rotation R.
Now consider an infinitesimal rotation described by

e - N

D(R)=1- - (4.5)
Eq. (4.5) in Eq. (4.4) gives
Vi —i€e/h[V;, J - n] = ZRZ]V (4.6)
For n = Z we have
1 —e 0
R(z2,e)=| € 1 0 (4.7)
0 0 1
Egs. (4.6) and (4.7) now gives
Ve +€/(th)[Vy, J.] = Ve—¢€Vy,
Vy+€/(in)[Vy, J.] = eVatV, (4.8)
Vo+e/n)Ve, L] = V.
Thus,

Eq. (4.9) is usually used as the definition of a vector operator.

The definition of a N-th rank Cartesian tensor was given in Eq. (4.1). Using the
idea that lead to the definition of a vector operator, Eq. (4.9), we will now define
the spherical tensor operator. First a few words on why irreducible spherical tensors
operators are superior to reducible Cartesian tensors operators. We do this by looking
at the simplest Cartesian tensor of rank 2, the dyadic

,Tij = CLibj (410)
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This Cartesian tensor have nine components and it obviously transforms according to
Eq. (4.1) under rotation. By rewriting the tensor a;b; as

b b —abi (aibj+abi a-b
a,-bj = %5” + &i% 5 4 + (a J 9 9% _ 0,3 6”) (4.11)

we see that the first term is a scalar, the second (an antisymmetric tensor) can be
rewritten as €;;x(a X b), and have three independent components. The third term is a
3 x 3 symmetric traceless tensor with 6-1=>5 independent components. We also note
that the total number of independent components is the same, i.e. 3 x 3 =1+ 3+ 5.
Recalling that the number of components for the spherical harmonics was 2/ + 1 we
see that Eq. (4.10) has been transformed into tensors that transform like spherical
harmonics with [ =0, [ =1 and | = 2, ¢.e. the Cartesian tensor a;b; has been reduced
into irreducible spherical tensors. The very fact that spherical tensors are irreducible,
just as the spherical harmonics, make them better to work with than the reducible
Cartesian tensors.

It is obvious that the spherical harmonics are important when discussing spherical
tensors, so let us look at how Y;™ transforms under a rotation. First define the rotated
eigenket |n') as

) = D(R)|n) = |n') (4.12)
The problem we now want to solve is how Y, (7') look in terms of Y;™(n).

V(@) = (flim) = (DR [im) = 2 (@lim’) (| D(R) m)
=S¥ DM zym D2 (R) (4.13)

In analogy with our previous vector operator case it is reasonable to demand that the
expectation value of a spherical tensor operator transforms like a spherical harmonic
under rotation, i.e. like Eq. (4.13). We get

(alY/™()]a) — (ol D'(R)Y;™ () D(R)|e) =Z<a|ﬁm'(ﬁ)\a>Dﬁf%(R) (4.14)

and because this must be true for any |a>we have for the operator ;™ () under rotation

DY R)Y™ (7 Z Y™ () DY (R) (4.15)

mm’

We now define a spherical tensor operator of rank & with 2k + 1 components as
D(RT®DYR) = Y DW(R)TH (4.16)
=k

Once again in analogy with the vector operator case we look at the infinitesimal
rotation

q

k
(1 +iJ - Ae/R)TH (1 —iJ - fe/h) = z T kg |(1 + i - fe/B)|kq) (4.17)
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with 7 = Z and & + g we finally get using the equivalent of Eq. (4.17)

[T -7, T®] = ST (kq'| T - 7] kq) (4.18)
ql

[J., TM] = hgT (4.19)

[T, TO] = 1/ (k7 ) (k £ ¢ + DT, (4.20)

Egs. (4.19) and (4.20) are the definitions Racah used for irreducible spherical tensor
operators.

4.3 The product of two tensor operators

When previously discussing the reducibility of the dyadic Cartesian tensor T;; = a;b;
we formed 7;; by multiplying together a; and b; thus arriving at the nine components
of T;j; rank 2 Cartesian tensor. It is now natural to investigate how to form a product
of irreducible spherical tensors. We will show that

XG0 = (10U #) = 3 TEUE g b2 K Q) (4.21)

q192

is a irreducible spherical tensor. Tq(lkl) and Ué,fz) are irreducible spherical tensors of
rank k; and ks, respectively. Note the obvious similarities between Eq. (4.21) and
Eq. (2.7) which describe the re-coupling of two angular momenta. In proving Eq.
(4.21) we will see that Xg{) transforms according to DY)(R) under rotation, thus the
representation D1 (R) x D®2)(R) has been reduced to D), j.e. we have obtained
block-diagonal form.

To show that X g() is a spherical irreducible tensor operator we want to show that

Xg() transforms according to Eq. (4.16) under rotation.

DYR)XGID(R) = 3 (krkaqigo| ki ks KQ) DY (R) T D(R) DY (R) U D(R)

qi1q2

= (Bq.(416)) = 3" (kikoqialki ba KQ) Dy (R)T D) (R)UL™

q; q29q,
01924, 95

= Z (k1kaqqo| k1 ko K Q) (k1k2q1Go |DT(R) ‘k1k2CIiCZ§>T$1)U$2)

919291 ¢5
= Z (k1koqigo| k1 ko K Q) (k1kagga| ki ko K'Q') %
Q92¢1 5 K'Q' K" Q"

x (il K'Q' | DY (R) loaka K" Q") (ko K" Q" o ) Ty U,y

a3

K”
;(/Q//)JK’K”

= Z (k1k2q1Go|k1 ko K Q) (k1k2q162 |y ko K"QY )DQ(II;IIII) (R)

qlqqul qleIKIIQII

D
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X (kika K" Q" ki kot g) Ty VU™ = (Eq.(2.12)) =
= Y Sxwndog D! (R)(kiko K" Q" |k kaglgh)T U

ql QIKIIQH
=3 Dio (R (kika KQ |kikaq, ) TSV USY = (Bq.(4.21)) =
QII
*(K" K
=3 Di5 (R X5 (4.22)
QII

Proved! The definition of Xg() through Eq. (4.22) is of course equivalent to specify
the commutators such as Eqgs. (4.19) and (4.20). Once again the similarities between
Egs. (4.21) and (2.7) should be stressed, the operator defined in Eq. (4.21) can thus
be decoupled.

4.3.1 Scalar product of two tensor operators

From the triangular condition Eq. (2.14) we note that K = |k; — ksol, ..., k1 + ko. This
condition also tell us that if we have two tensors of the same rank, it is possible to
construct a scalar (rank 0),

X0 =S TOUW (kkq — q|kk00) (4.23)

q

The scalar product between two tensor operators is defined as

S=(TW.u®) =3 (~1)7HU" (4.24)

q

Eqgs. (4.23) and (4.24) differ only by a constant term and we will now show that Eq.
(4.24) lead to the “usual” scalar product for vectors when applied to vector operators.
Eq. (4.24) with k£ =1 give

S = -1HU® + TOU — T,

Vo V.

V. ) } c.f. YY) on cartesian form. (4.25)

\[(V + 4V,

and this give for S

S = T,U, + T,U, + T,U, (4.26)

which is recognized as the “standard” scalar product between two vectors.
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4.4 The product of three and four tensor operators

We previously showed that an operator defined by multiplying together two irreducible
tensor operators according to Eq. (4.21) also is an irreducible spherical tensor operator.
The obvious similarities between the definition Eq. (4.21) and re-coupling of two
angular momenta Eq. (2.7) lead us to the following definition, where T*1) U(%2) and
Vk3) are tensor operators,

(T(kl) (U(kz)v(ks))(kzs))g() — Z T(kl) U(kz) V(ks) <k2k3QQQ3|k2k3k23q23>

914243423

<k1/€23Q1Q23|k1k23KQ> (4-27)

and we have used Eq. (2.38), describing the decoupling of |js(j273)j23JM). This is in
complete analogy with the re-coupling of three angular momenta. We could of course
have chosen another scheme, e.g.

X

(Tr0g )ty k)00 = S~ Py Ry k) (k) kg, gk kokrogrz)
91424934912
X (ki12k3q12q3|k12k3 KQ) (4.28)

By changing representation one can go from Eq. (4.27) to Eq. (4.28), c.f. Eq. (2.32).
(T(kl)(U(kz)v(k:a))(kz:s))g() —
Z((T(kl)U(h))(k12)V(k3))g()<(k1k2)k12k3K|k1(k2k3)k23K> (4.29)

k12

The overlap element on the right hand side of Eq. (4.29) is proportional to the 6;-
symbol. Now, once at it, we can go ahead and define a tensor operator built from four
other tensor operators T®*1) Uk2) Vks) and Wks) Eq. (2.65) and (2.66) describe
the decoupling of |(j12)j12(jsja)jaaJ M) and |(j173)j13(j2ga)joa M), respectively. We
therefore obtain

((T(k1)U(k2))(k12)(V(kg)W(lc4))(k34))g{) — Z k) 7 (k2) vy (ks) g7 (ka) s

41429394912934

(kleQ1Q2 |k1k2k12CI12> </f3/f4Q3CI4 ‘k3k4k34Q34> <k12k34Q12CI34 |k12k34KQ> (4-30)

and

((T(kl)v(ks))(kls)(U(kz)W(kU)(ku))g() — Z T*) 7 (k2) 7/ (k3)pp7 (ka) o

41929344913924

<k1/€3(]1613 |k1k3k13Q13> <k2/€4Q2C]4 ‘k2k4k24Q24> (k13k24q13q24 |k13k24KQ> (4-31)

which again is in complete analogy with re-coupling of four angular momenta. Chang-
ing representation, i.e. getting from Eq. (4.30) to (4.31) will involve a 9j-symbol, c.f.
Eq. (2.67).

Defining a tensor operator involving five other tensor operators is of course straight
forward. However, we leave this to the curious reader. For the case of the product
of two tensor operators we showed that Xg(), defined by Eq. (4.22), transformed
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according the Eq. (4.16) under rotation (Eq. (4.22)). This can be done also for the
Eqgs. (4.27), (4.28), (4.30) and (4.31), but is rather tedious. We save this for homework
and/or an examination problem :)

This section is concluded by noting that tensor operators of the form in Eqgs. (4.27)
and (4.28) appears, for example, when defining tensor operators for magnetic hyperfine
interaction and those used when treating configuration interaction in () systems, c.f.
4f) systems, (particularly the core excitation ' *1[N+! and the excitation [V =11').
If time permits we will return to these interactions.
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