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1 Introduction

A C-arm system, such as the one shown in Figure 1, may be
used to acquire X-ray cone-beam projections of a patient’s three-
dimensional (3D) region of interest (ROI) while the X-ray source
moves along some trajectory around the ROI. Then, a 3D image
of the X-ray attenuation coefficient within the ROI may be re-
constructed from the acquired cone-beam projections.

In fact, C-arm systems are being used in this way, see e.g. [1, 2].
Typically, the source moves along a circular arc spanning an angle
of 180◦–200◦, and the image is reconstructed by a variant of the
algorithm of Feldkamp, Davis, and Kress [3]. As the cone-beam
does not cover the whole patient, the projections are truncated.
This is usually handled by extending the projections in a simple
manner parallel to the plane containing the source trajectory. In
practice, the true trajectory differs slightly from its ideal, but this
deviation can be measured [5, 6] and taken into account during the
reconstruction. The reconstructed image is subjected to a surface
or volume rendering process designed to extract and visualize
only the high contrast structures of the object under examination.

The reconstructed image itself is usually cluttered by severe
artifacts. Nevertheless, the high contrast structures, such as bones
or blood vessels filled with intraarterially injected contrast agents,
are well recovered. This is because such structures stand out well
against the background and are also reconstructed at the correct
geometric locations.

Accurate images of medium contrast structures, such as blood
vessels filled with intravenously injected contrast agents, or low
contrast structures, such as soft tissue organs, are not obtained
in this way. If this is to be improved upon, the following condi-
tions will have to be met: First, the data acquired by the C-arm
system must provide (after some preprocessing) accurate, though
sampled, cone-beam projections of the object function (the X-ray
attenuation coefficient). Second, the sampling density along the
trajectory and on the detector surface must be sufficiently high.
Third, the source trajectory must be complete in the sense that ev-
ery plane that intersects the ROI contains a source point. Fourth,
the cone beam projections must not be truncated. Under these
conditions, any standard exact cone-beam reconstruction algo-
rithm will produce an accurate estimate of the object function
within the ROI. It has been tacitly assumed that the object func-
tion varies only spatially. Imaging moving parts of the human
body, such as the beating heart, is not considered here.

Measuring accurate cone-beam projections of the object func-
tion presents a number of technical challenges, but no funda-
mental obstacles, and is also not considered here. Making the
sampling density sufficiently high is not a fundamental problem
either. The problem of designing source trajectories that are both
complete and realizable by appropriate C-arm systems is dis-
cussed and solved in Section 4. The remaining requirement for
non-truncated cone beam projections cannot be satisfied by any
realistic C-arm system when the object to be imaged is part of

Figure 1. Integris Allura C-arm system (Philips Medical Systems, Best,
The Netherlands).

a human body. As in the fan-beam case [4] one can show that
truncated cone-beam projections leave the object undetermined.
To cope with this fundamental limitation we suggest in Section 3
to extend the truncated projections in a relatively simple fashion
so as to fake non-truncated projections of an imaginary object
that is somewhat bigger than the ROI, and to apply a suitable
cone-beam reconstruction algorithm to the extended projections.
It will be argued in Section 3 that an image thus obtained can be
expected to differ, inside the ROI, from the true image merely
by some unknown, but smooth, nearly constant, and fairly weak
ghost image. The reconstructed image would therefore still allow
the detection of fine anatomical details.

2 C-Arm Systems

A typical C-arm system, such as the one shown in Figure 1, is
equipped with a point like X-ray source and a planar X-ray detec-
tor, usually an image intensifier, which are mounted to the ends
of a C-arm. The C-arm is held by another arm, which we refer to
as the C-arm suspension. The C-arm suspension is attached to an
L-arm, which is mounted to the ceiling (or floor). The L-arm can
be rotated about a vertical axis. The C-arm suspension can be
rotated about a horizontal axis attached to the L-arm. By rotating
L-arm and C-arm suspension about their axes, the orientation of
the plane containing the C-arm may be changed. The C-arm it-
self may be rotated within this plane about an axis perpendicular
to this plane. All three rotation axes meet in a single point, the
isocenter. Also, the straight line from the X-ray source to the
center of the detector surface passes through the isocenter. The
rotations themselves are effected by servo motors. When one or
more of the the arms rotate, the X-ray source moves along a cor-
responding trajectory. The trajectory is confined to the surface
of an isocentric sphere and further constrained by the electrome-
chanical design of the joints connecting the arms.



3 The Reconstruction Problem
Points in space will be referenced with respect to a right-handed
Cartesian coordinate system, the laboratory system, which we
attach to the isocenter of the C-arm system such that the z-axis
points upwards and the y-axis along the patient table. The object
to be imaged is represented by a function f : R3 → R. The
source trajectory is represented by a smooth mapping a : � →
R3, where � = [λ−, λ+] is a bounded interval. When the source
is at position a(λ), the sensitive area of the detector defines a
plane D(λ) ⊂ R3. The sensitive area of the detector itself is
represented by the disk D0(λ) ⊂ D(λ). The set of unit vectors
θ ∈ S2 such that the ray {a(λ) + sθ | s ≥ 0} hits D0(λ) is
denoted by S0(λ). The source point a(λ) and the unit vectors in
S0(λ) define the cone C0(λ) = {a(λ) + sθ | s ≥ 0, θ ∈ S0(λ)}.
The biggest centered ball contained in all cones C0(λ), λ ∈ �,
is denoted by B0, its radius by r0. This ball is also the biggest
centered ball within which we can hope to obtain an accurate
reconstruction. In practice, r0 lies between 100 and 150 mm. We
define the function g : � × S2 → R by

g(λ, θ) =
∫ ∞

0
f (a(λ) + sθ) ds. (1)

The function g(λ, ·) represents the (non-truncated) cone-beam
projection of f with vertex a(λ). The data acquisition process
provides (a sampled and noise contaminated version of) the func-
tion g̃(λ, u, v) = g(λ, θ̃(λ, u, v)), where (u, v) are local coordi-
nates in the detector planeD(λ) and θ̃(λ, u, v) ∈ S0(λ) is the unit
vector pointing from a(λ) to the point (u, v) on D0(λ). Thus,
g(λ, θ) is available only for λ ∈ �, θ ∈ S0(λ). Using these data,
we wish to reconstruct f in the ball B0. When the object is a
part of a human being, the acquired cone-beam projections are
inevitably truncated, i.e., the support of f extends beyond B0,
and there exist λ ∈ � and θ ∈ S2 \ S0(λ) such that g(λ, θ) �= 0.

For a stable and accurate reconstruction of f in B0 it is neces-
sary that the source trajectory a satisfy the following complete-
ness condition (see [7] and the references cited therein): Every
plane that intersects the ball B0 contains a source point a(λ).
A source trajectory satisfying this condition will be called com-
plete with respect to B0. The normals of the planes that contain
a source point a(λ) and intersect the ball B0 form an umbrella-
shaped surface

U(λ, r0) = {rθ | |r| ≤ r0, θ ∈ S2, a(λ) · θ = r} (2)

within B0. Using the correspondence between planes and their
normals, the completeness condition may be rephrased as fol-
lows: The collection of the surfaces U(λ, r0), λ ∈ �, fills the
ball B0 completely.

In general, it is hard to prove by argument that a given trajectory
is complete with respect toB0. However, a computer may be used
to draw a large number of surfacesU(λ0, r0), . . . , U(λN, r0)with
λn = n(λ+ − λ−)/N , n = 0, 1, . . . , N , and it may be checked
visually whether these surfaces will densely fill B0 as N → ∞.

In the remainder of this section, we assume that the source
trajectory is complete with respect to B0. Then, if the cone-
beam projections were not truncated, f could be reconstructed
inside B0 using an appropriate cone-beam reconstruction algo-
rithm, such as the filtered backprojection algorithm described

in [8]. This algorithm is designed to act on g̃(λ, u, v) rather than
on g(λ, θ).

The development presented in [8] also allows one to derive the
explicit reconstruction formula

frec(x) = 1

8π2

∫
�

∫
S2

K(x, λ, θ)g(λ, θ) dθ dλ (3)

with the kernel

K(x, λ, θ) =∫
S2

|a′(λ) · β|
‖x − a(λ)‖2 M(λ,β)δ′

ε(β · φ(λ, x))δ′
ε(β · θ) dβ. (4)

Here, a′ is the derivative of a; δ′
ε is a regular and smooth ap-

proximation to the derivative of the δ-function; M is a smooth
weighting function accounting for the fact that a plane can contain
several source points [7, 8]; and

φ(λ, x) = x − a(λ)

‖x − a(λ)‖ . (5)

When the conditions are right, one expects frec to tend to f inside
B0 as δ′

ε tends to δ′. A discretized version of (3) could provide the
basis for a (computationally inefficient) reconstruction algorithm.

More interestingly, the kernel (4) highlights an important prop-
erty of the reconstruction problem: Since δ′

ε is concentrated near
zero, δ′

ε(β ·φ(λ, x)) is appreciably nonzero only when β belongs
to a neighborhood of the circle S2 ∩ φ(λ, x)⊥, and δ′

ε(β · θ) is
appreciably nonzero only when β belongs to a neighborhood of
the circle S2 ∩ θ⊥. The mentioned two circles are identical if
θ and φ(λ, x) are parallel; otherwise they have only two points
in common. As a result, K(x, λ, θ) is appreciably nonzero at
most when θ and φ(λ, x) are nearly parallel, i.e., when the ray
{a(λ) + sθ | s ≥ 0} comes close to x. In addition, K(x, λ, θ)

depends smoothly and weakly on λ and θ whenever a depends
smoothly on λ and the ray {a(λ) + sθ | s ≥ 0} does not come
close to x. Although the reconstruction process is not strictly
local, it is still semi-local.

The reconstruction problem of 2D CT has similar properties
[9]. It is also possible to extend the ideas presented in [9] to the
3D case: From (3) we find that

frec(x) = f0(x) + f1(x) (6)

with

f0(x) = 1

8π2

∫
�

∫
S0(λ)

K(x, λ, θ)g(λ, θ) dθ dλ, (7)

f1(x) = 1

8π2

∫
�

∫
S2\S0(λ)

K(x, λ, θ)g(λ, θ) dθ dλ. (8)

The function f0 is well determined by the available data, but f1
is completely undetermined. Owing to the semi-local nature of
the reconstruction process, f0 will be fairly smooth well outside
B0 and decay quickly there. Conversely, f1 will be fairly smooth
well within B0. Also, a crude guess of the truncated portions
of the cone-beam projections should suffice to compute a fair
approximation to f1 inside B0. Already a crude guess of the
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Figure 2. A C-arm system drawn as a series of links and joints.

integrals along the lines that pass through a centered ball B1 a
little larger than B0 should suffice for this purpose.

These observations suggest the following method for coping
with truncated cone-beam projections: 1. Choose a centered ball
B1 somewhat bigger than B0. For each λ ∈ �, let D1(λ) be
the perspective projection of B1 from a(λ) onto D(λ). 2. Ex-
tend each truncated cone-beam projection g̃(λ, ·, ·) radially from
D0(λ) to D1(λ) using, for example, the 1D extension method
proposed in [9] in radial direction. 3. Reconstruct f in B0 by
applying the filtered backprojection algorithm described in [8],
or some other suitable cone-beam reconstruction algorithm, to
the extended projections.

An image reconstructed in this way can be expected to differ
inside B0 from the true image merely by some unknown, but
smooth, nearly constant, and fairly weak ghost image.

4 Complete Source Trajectories
To specify and design source trajectories, we adopt a method
commonly used in robotics [10]. The first step is to model the
C-arm system by a series of rigid links connected by revolute
joints. Figure 2 illustrates the idea. There are four links, denoted
by l0, l1, l2, l3, and three joints, denoted by j1, j2, j3. Link l0 is
fixed to the laboratory. Link l1 represents the L-arm, link l2 the
C-arm suspension, and l3 the C-arm. Joint jk connects links lk−1
and lk , k = 1, 2, 3. Each joint defines an axis of rotation, and
these axes intersect in the isocenter.

Next, a right-handed Cartesian (xk, yk, zk)-coordinate system
is attached to link lk , k = 0, 1, 2, 3. There is some freedom
in the choice of the origins and orientations of these coordi-
nate systems; we make the choices indicated in Figure 2. In
the jargon of robotics, the coordinate system attached to link l3
is called the tool frame. The coordinate system attached to link
l0 is called the base frame and coincides with the laboratory sys-
tem introduced in Section 3. The angle between the xk−1-axis
and the xk-axis, measured about the zk−1 axis, is denoted by θk ,
k = 1, 2, 3. Each triple (θ1, θ2, θ3) defines a configuration of the
C-arm system. Figure 2 illustrates the configuration associated

with (θ1, θ3, θ3) = (0,−π/2, 0).
A point in space may be specified by its coordinates in either

of the four coordinate systems. It is explained in [10] how to
transform the coordinates of the point from the tool frame to its
coordinates in the base frame: If the point is represented by x3
in the tool frame, then it is represented by

x0 = R(θ1, θ2, θ3)x3 (9)

in the base frame, where R(θ1, θ2, θ3) is a rotation matrix. This
matrix can be derived from the information provided in Figure 2
and is given by (see also example 3.3.3 in [10])

R(θ1, θ2, θ3) =

 c1c2c3 − s1s3 −c1c2s3 − s1c3 c1s2

s1c2c3 + c1s3 −s1c2s3 + c1c3 s1s2
− s2c3 s2s3 c2




with ck = cos θk and sk = sin θk , k = 1, 2, 3.
In the tool frame, the source is always at position xsrc =

(−rsrc, 0, 0)T , where rsrc is the distance between source and
isocenter. When the angles θ1, θ2, θ3 are chosen as functions
of the parameter λ ∈ �, then xsrc moves along the trajectory

a(λ) = R(θ1(λ), θ2(λ), θ3(λ))xsrc, λ ∈ � (10)

in the base frame. Thus a trajectory may be specified by three
angular functions θk(λ), k = 1, 2, 3.

To design trajectories that are complete with respect to B0, we
may simply guess appropriate angular functions. Whether a can-
didate trajectory is complete with respect to B0 may be checked
as described in Section 3. The mechanical and electromechanical
constraints of the C-arm system will have to be obeyed. Angle
θ1 is preferably chosen constant, but for a complete trajectory
the other two angles must vary. Accordingly, the C-arm system
must allow a simultaneous rotation of the C-arm and the C-arm
suspension while cone-beam projections are being taken.

To realize a trajectory, the parameter λ is replaced by a smooth,
monotonically increasing function of time, say τ : [t−, t+] → �,
and the resulting functions θk(τ (t)) are used to drive the corre-
sponding servo motors of the C-arm system. For physical reasons
the first and second derivatives of the entailing trajectory a(τ (t))

must vanish as t ↓ t− and t ↑ t+. This may be achieved by a
proper choice of the function τ . Alternatively, the original tra-
jectory may be augmented at both ends with extra segments for
acceleration and deceleration.

The left panel of Figure 3 illustrates a favorable source trajec-
tory found in this way. In this and the following examples, the
distance between source and isocenter is 810 mm, and the radius
of B0 is about 125 mm. The right panel of Figure 3 shows 28
umbrella-shaped surfaces within B0, as described in Section 3.
As can be seen, this trajectory is complete. Figure 4 illustrates
four additional complete trajectories. The angular functions for
all five example trajectories are given in Table 1. The definitions
involve some magic constants which depend on the geometrical
parameters of the underlying C-arm system. As indicated in the
table, these example trajectories have various merits and may
impose additional technical requirements on the C-arm system.

As with a circular arc, the true trajectory will deviate a little
from the prescribed trajectory, but these deviations can be mea-
sured and taken into account during the reconstruction. With
high-end C-arm systems the deviations are also reproducible.
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Figure 3. A complete source trajectory. The small ball in the left panel
represents B0. The right panel illustrates the filling of B0 with umbrella-
shaped surfaces, as described in Section 3.
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Figure 4. Four additional complete source trajectories.

Illustration Definition (0 ≤ λ ≤ 1) Comments

Figure 3

θ1(λ) = − π
180 36

θ2(λ) = π
180 (22.5 − 225λ)

θ3(λ) = π
180 (45 − 90λ)

L-arm at −36◦
θ1, θ2 linear

Figure 4
top left

θ1(λ) = 0

θ2(λ) = π
180 (22.5 − 225 sin2(πλ/2))

θ3(λ) = π
180 18 sin(2πλ)

L-arm at 0◦

Figure 4
top right

θ1(λ) = 0

θ2(λ) = π
180 (22.5 − 225 sin2(πλ))

θ3(λ) = π
180 12 sin(4πλ)

L-arm at 0◦
trajectory closed

Figure 4
bottom left

θ1(λ) = 0

θ2(λ) = π
180 (−90 − 360λ)

θ3(λ) = π
180 15 cos(4πλ)

L-arm at 0◦
trajectory closed
requires 360◦ rotation for j2

Figure 4
bottom right

θ1(λ) = − π
180 90

θ2(λ) = π
180 a2(λ)

θ3(λ) = π
180 a3(λ)

L-arm at −90◦
trajectory closed
a2, a3 shown in Figure 5
requires 210◦ rotation for j3

Table 1. The definitions of the five example trajectories.
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Figure 5. The functions a2 (solid) and a3 (dashed) referenced in the last
row of Table 1.

References
[1] M. Grass, R. Koppe, E. Klotz, R. Proksa, M. H. Kuhn,

H. Aerts, and J. Op de Beek, “Three-dimensional recon-
struction of high contrast objects using C-arm image inten-
sifier projection data,” Computerized Medical Imaging and
Graphics, vol. 23, pp. 311–321, 1999.

[2] K. Wiesent, K. Barth, N. Navab, T. Brunner, O. Schuetz,
and W. Seissler, “Enhanced 3D-reconstruction algorithms
for C-arm systems suitable for interventional procedures,”
IEEE Transactions on Medical Imaging, vol. 19, no. 5, pp.
391–403, May 2000.

[3] L. A. Feldkamp, L. C. Davis, and W. J. Kress, “Practical
cone-beam algorithm,” J. Opt. Soc. Amer. A, vol. 1, no. 6,
pp. 612–619, June 1984.

[4] C. Hamaker, K. T. Smith, D. C. Solmon, and S. L. Wagner,
“The divergent beam X-ray transform,” Rocky Mountain
Journal of Mathematics, vol. 10, no. 1, pp. 253–283, 1980.

[5] R. Koppe, E. Klotz, J. Op de Beek, and H. Aerts, “3D
vessel reconstruction based on rotational angiography,” in
CAR ’95: Computer Assisted Radiology and Surgery, H. U.
Lemke, K. Inamura, C. C. Jaffe, and M. W. Vannier, Eds.
1995, pp. 101–107, Springer.

[6] R. Fahrig and D. W. Holdsworth, “Three-dimensional com-
puted tomographic reconstruction using a C-arm mounted
XRII: Image-based correctin of gantry motion nonideali-
ties,” Medical Physics, vol. 27, no. 1, pp. 30–38, January
2000.

[7] R. Clack and M. Defrise, “Cone-beam reconstruction by
the use of Radon transform intermediate functions,” J. Opt.
Soc. Amer. A, vol. 11, no. 2, pp. 580–585, February 1994.

[8] M. Defrise and R. Clack, “A cone-beam reconstruction
algorithm using shift-variant filtering and cone-beam back-
projection,” IEEE Trans. Med. Imag., vol. 13, no. 1, pp.
186–195, March 1994.

[9] R. M. Lewitt, “Processing of incomplete measurement data
in computed tomography,” Medical Physics., vol. 6, no. 5,
pp. 412–417, 1979.

[10] M. W. Spong and M. Vidyasagar, Robot Dynamics and
Control, John Wiley & Sons, 1989.


